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ABSTRACT

Owing to the high sensitivity of quantum mechanical systems to
even small perturbations, means of error protection are essential
for any computation or communication process based on quantum
mechanics. After a short introduction to quantum registers and
operations as well as quantum channels, different approaches to
the problem of protecting quantum information are presented.

1. INTRODUCTION

The use of quantum mechanical systems opens new perspectives
for both computation and communication purposes. On a quantum
computer, large integers could be factored in polynomial time [1],
threatening some public key cryptosystems like RSA. On the other
hand, quantum mechanics allows secure key generation [2].

In all applications, the quantum mechanical systems must be
protected against errors due to interactions with the environment.
One approach to this task is based on encoding that either allows
error detection and correction, or decouples the state of the system
from the environment. Another class of techniques uses classi-
cal communication between the partners in order to establish the
resources required for error-free quantum communication, or to
allow a request for retransmission in case of failure.

2. QUANTUM BITS AND QUANTUM GATES

2.1. Quantum Registers

Classically, information is often represented by bits. A single bit
takes either the value 0 or 1. In physical systems, 0 and 1 are
represented by two different states of the system. These could be
two different voltages, signals with two different frequencies, but
also states on the quantum mechanical level, e. g., ground state and
excited state of an electron of an atom or ion, the spin of a nucleus,
or the polarization of photons. In Dirac notation, the two states are
written as

“0” and “1”

In quantum mechanics, the principle of superposition allows
a system to be simultaneously in different states. Mathematically,
the state of the basic unit of quantum information, a quantum bit
(or short qubit), is represented by the normalized linear combina-
tion

where , .

The normalization condition stems from the fact that when extract-
ing classical information from the quantum system by a measure-
ment, the values and occur with probability and , resp.

Similar to classical registers, a quantum register is built by
combining several qubits. Mathematically, this corresponds to the
tensor product of two-dimensional vector spaces. Hence the state
of a quantum register of length could be any normalized complex
linear combination of the mutually orthogonal basis states

where .

2.2. Quantum Gates

The laws of quantum mechanics say that any transformation on
quantum systems is linear. Furthermore, in order to preserve the
normalization any operation has to be unitary. Let us first consider
operations involving only one qubit, i. e., one subsystem. Simi-
lar to the classical gate, there is a quantum operation inter-
changing the states and . But even on a single qubit, there
is not only this “classical” operation. An important example for a
non-classical operation on a single qubit is the Hadamard transfor-
mation given by

Besides single qubit operations, the so-called controlled
gate ( ) plays an important rôle since any unitary operation
on a -dimensional space can be implemented using only single
qubit operations and gates (see [3]). As a classical gate,
the gate corresponds to a gate with two inputs and two
outputs. One of the inputs is copied to the first output, the second
output is the of the inputs. The transformation matrix of the

gate is given by:

On the right hand side, the notation for the gate as a quan-
tum circuit is given. Each of the horizontal lines (wires) corre-
sponds to a qubit of the whole quantum register. The dot on the
upper wire indicates that the transformation on the lower qubit (the
target)—a gate—is only applied when the state of the upper
qubit (the control) is .
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3. QUANTUM CHANNELS

3.1. Open Quantum Systems

We assume that our quantum system interacts with an environment
which is not or only partially accessible. Nevertheless, we can
model the interaction by a unitary transformation interaction int

on the Hilbert space formed by the system and its environment.
Assuming that there is no prior entanglement of the system with
the environment, the interaction operator reads as

sys env interaction sys env

After this interaction, the state need no longer be a tensor prod-
uct. Since we cannot control the environment, we have to discard
any information about the environment. This is mathematically
reflected by tracing out the environment:

sys env int sys env int

sys (1)

The state of our quantum system is now, in general, a mixed state
given by the density operator sys. One interpretation of a mixed
quantum state is that we have an ensemble of pure quantum states
chosen according to a probability distribution. In our case, one
can think of a measurement performed on the environment. Due
to entanglement with the system, this may lead to different states
of the system depending on the measurement outcome—but we
do not know which state since the result of the measurement is
discarded.

In order to model a quantum channel, we make use of equa-
tion (1). The disturbed quantum state sys can be expressed only in
terms of the initial state sys of the system and some interac-
tion operators which completely specify the channel.

3.2. Depolarizing and Erasure Channel

To illustrate the preceding, we consider two important quantum
channels. Over a depolarizing channel [4], quantum information
is transmitted undisturbed with probability , and it is replaced
by a completely randomized quantum state with probability . A
common assumption is that errors act independently on each qubit.
In this case, for a single qubit equation (1) reads

sys sys

sys

sys

(where , , and are the Pauli matrices). For a small error
probability , errors affecting a small number of qubits are more
likely than errors involving a large number of qubits.

A related quantum channel is the quantum erasure channel [5].
Again, the quantum state is transmitted undisturbed with probabil-
ity . In case of an error, the quantum state is replaced by
a quantum state that is orthogonal to all other quantum states.
Equation (1) now reads

sys sys

Similar to classical erasures, the state indicates that an error oc-
curred, i. e., side-information about positions of errors is available

for the decoding process. Note that by adding the state we have
increased the dimension of the Hilbert space of the system by one.
Alternatively, we may use any state of the original space instead of

and describe the positions of errors by other means.

4. ENCODING TECHNIQUES

When quantum information has to be stored, there is no feed-back
channel from the receiver to the sender. Then, information must
be encoded in such a manner that possible errors can be corrected,
or that no errors occur.

4.1. Quantum Error-Correcting Codes

Unlike classical information, unknown quantum information can-
not be copied [6]. Therefore, the simple idea of a—say triple—
repetition code does not work. Nevertheless, it is possible to en-
code quantum information in a subspace of a higher dimensional
space such that error correction is possible. Following the first ex-
ample of a quantum error-correcting code (QECC) of Shor [7], a
theory of QECC has been developed [8].

The main idea of QECC is to find an orthogonal decompo-
sition of a large Hilbert space into a smaller subspace where the
information is stored—the code space—and so-called error spaces
which are orthogonal images of the code space. Information about
the error is obtained by means of a measurement projecting on one
of these spaces. The measurement, however, does not yield infor-
mation about the quantum information itself.

Surprisingly, there is a close connection to error correcting
codes over finite fields [9, 10, 11]. Moreover, a lot of code fam-
ilies have their quantum counterpart, such as Reed-Muller codes
[12], BCH codes [13], and Reed-Solomon codes [14]. For cyclic
QECC, a great variety of encoding and decoding techniques exist,
e. g., based on spectral techniques or on the quantum version of
linear shift registers [15].

4.2. Error Free Subspaces

When more information about the interaction between the system
and the environment is available, alternate techniques for protect-
ing quantum information may be applicable. While QECC re-
quire an active recovery process after an error occurred, the idea
of error free subspaces is to avoid errors. More precise, infor-
mation is encoded in a subspace of the system on which the sys-
tem/environment interaction acts trivially (or as a common phase
factor). Obviously, a precise model of this interaction has to be
known. For general errors, there need not be such an error free sub-
space, but there are subspaces that are unaffected by, e. g., strongly
correlated errors [16, 17].

5. COMMUNICATION PROTOCOLS

Although it is not possible to transmit quantum information by
classical information only—since this would allow to copy quan-
tum states—, an additional communication channel for classical
information is helpful as we will show below.

5.1. Teleportation

Astonishingly, quantum information can be transmitted by classi-
cal information when the two parties—say Alice and Bob—initial-

I-741



ly share an additional resource, a so-called EPR pair (see [18, 19]
for the theory and [20] for experiments). The process of teleporta-
tion is reflected by the quantum circuits shown in Fig. 1.

EPR state Bell basis Bob’s correction

EPR state Bell basis

classical data

Bob’s correction

Figure 1: Quantum circuit for teleportation.

The upper circuit transforms the quantum state into
. The first part produces an EPR state in

the last two qubits. This may be done at any time before the com-
munication. Then the first two qubits (of Alice) are transformed
into the so-called Bell basis. The next operations are conditioned
on the first two qubits and act on the last qubit (of Bob). The final
Hadamard transforms on Alice’s qubits reset them to the state .
After the preparation of the EPR state, the only interactions be-
tween Alice’s qubits and Bob’s qubit are transformations that are
conditioned on the first two qubits. It is now possible to measure
Alice’s qubits and transmit the—classical—outcome to Bob who
performs the final operations according to the data received. This
procedure is depicted in the lower circuit.

In summary, the transmission of one qubit has been replaced
by the transmission of two classical bits, at the prize of initially
sharing an EPR pair. Hence a quantum state must be sent anyhow,
and this state is also subject to errors. However, this particular
quantum state can be sent at any time before the actual communi-
cation.

5.2. Entanglement Purification and Quantum Repeaters

In order to send quantum information by teleportation, the par-
ties need EPR pairs. If these EPR pairs are distributed over noisy
quantum channels, the teleportation process is also noisy. It has
been shown that it is possible to distill a small number of better
EPR pairs starting from a supply of many EPR pairs [21]. This
process of entanglement purification is sketched as follows. Both
parties operate locally on their half of each EPR pair. Some of
the qubits are measured, and the results of the measurement are
communicated. Hence, in addition to the quantum channel for the
distribution of the EPR pairs, a bi-directional classical channel is
required. Based on the measurement results, some of the particles
are discarded. This decreases the number of remaining noisy EPR
pairs, but increases their quality. The final EPR pairs are used for
teleporting the quantum state.

For quantum communication over larger distances, a scheme
using quantum repeaters has been proposed and analyzed [22].
Again, the first phase of the protocol aims at improving the qual-
ity of EPR pairs to be used for teleportation in the second phase.
Initially, EPR pairs are generated and purified between neighbor-
ing communication partners. Then, entanglement swapping is per-
formed at the repeaters to establish EPR pairs between both neigh-

bors. The idea of entanglement swapping is illustrated in Fig. 2.
Initially, particles 1 and 2 resp. 3 and 4 are in EPR states. Perform-
ing a Bell measurement on particles 2 and 3 results in an EPR state
between particles 1 and 4, without any direct interaction between
these particles.

1

2

4

3

1

2

4

3
Bell measurement

1

2

4

3

Figure 2: Entanglement swapping.

The whole process is repeated several rounds, where in each
round the distance between the communication partners increases.
The total number of rounds is logarithmic in the number of re-
peaters since they are organized as a binary tree (see Fig. 3).

R
ou

nd

Alice Bob

Figure 3: Scheme for generating EPR pairs between Alice and Bob
using repeaters . Entanglement purification is used to increase
the quality of the EPR pairs (along the arrows). Entanglement
swapping (indicated by ovals) is used to increase the distance be-
tween the EPR pairs.

5.3. Other Protocols

A common feature of all error control techniques described so far
is that there is a non-zero probability of failure. Furthermore, it
cannot be detected whether the correction step was successful. For
particular systems, it is possible to use a quantum communication
protocol that achieves perfect transmission [23]. Before sending
the quantum states, the sender prepares an auxiliary state that has
the function of a backup. After the quantum state was sent, it
is possible to detect whether the transmission was successful. If
not, the backup system can be used to restore the original state,
followed by another attempt to transmit the quantum state. For
this scheme, it is guaranteed that the transmission is perfect, at the
cost that the number of attempts until success is not fixed.

6. FINAL REMARKS

This list of error control techniques for quantum systems is, of
course, not complete. We have rather aimed at presenting several
approaches which differ in their prerequisites, e. g., whether an
additional channel for communication of classical information is
available or not.

Most of the literature on quantum computation and communi-
cation can be found at the Los Alamos National Laboratory archive
http://xxx.lanl.gov/archive/quant-ph.
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