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Recently it has been shown by several authors that quantum states can be stabilized against decoherence by
periodically performing measurements and unitary transformations. We extend their decay model to a more
realistic one in the framework of quantum optics conforming to the Markov approximation. It is shown that all
quantum error correcting codes are able to cope with this decay model too.@S1050-2947~96!00410-6#

PACS number~s!: 03.65.Bz, 89.70.1c, 42.50.Lc

I. INTRODUCTION

Much of the ongoing research is carried out to create and
manipulaten-particle entangled states~ES!. ES have appli-
cations in a variety of contexts: They are fundamental for
quantum computation and quantum communication@1#, are
the basis of fundamental tests of quantum mechanics versus
local realists’ theories@2#, and promise novel atomic spec-
troscopy techniques with resolution better than the standard
quantum limit@3#. The main obstacle, however, is the fragil-
ity of macroscopic quantum states due to the coupling to an
environment. Thus, it is of crucial importance to understand
the effects of decoherence and to develop methods to stabi-
lize ES against decoherence in realistic systems@4#.

The generic device for creating and manipulating en-
tanglement is the quantum computer, which may be viewed
as a quantum state synthesizer. It is thus natural to discuss
the problem of stabilizing ES in the language of quantum
computing. The memory of a quantum computer~‘‘quantum
register’’! consists of a set of two-level systems usually re-
ferred to as ‘‘qubits.’’ In order to perform any desired com-
putation one should be able to perform arbitrary unitary
transformations on the quantum register. These operations
can be decomposed into a sequence of steps involving only a
few qubits at a time~‘‘quantum gates’’! @1#. Further require-
ments to realizing a quantum computer are a way to read out
the final result and a method to reset the quantum register.

There are two kinds of errors that arise in the process of
creating and preserving ES:~i! Static errors that take place
after the ES has been created successfully~‘‘quantum
memory errors’’! and ~ii ! dynamical errors in the process of
creating an ES~‘‘quantum gate errors’’!. Schemes to deal
with errors of type~i! have been proposed by several authors
@5–9#. Very recently a scheme to correct dynamical errors of
type ~ii ! has been proposed by Ciracet al. @10#.

The error correction schemes proposed in Refs.@5–7#
have the capability to correct single errors and require sys-
tems ofn59, 7, or 5 qubits to encode a single qubit. For
these schemes, it has been shown that errors can be corrected
perfectly if a single ~but arbitrary! qubit interacts with the
environment according to an arbitrary time evolution opera-
tor Udec:

Udec:F u0&ue0&
u1&ue0&

G→F u0&ue1&1u1&ue2&
u0&ue3&1u1&ue4&

G . ~1!

Hereu0& andu1& are the basis states of the qubit anduei& are
arbitrary states of the environment, as long as unitarity in Eq.
~1! is fulfilled. The main idea of these error correction
schemes is to measure periodically if, and what kind of, an
error has taken place without gaining any information on the
stored quantum superposition. If an error is detected an ap-
propriate unitary transformation is performed to reconstruct
the original state.

An example for such a code is that given by Shor@5#,
where a single qubit is encoded redundantly in nine qubits:

u0&5u1&u1&u1&, ~2!

u1&5u2&u2&u2&,

where

u6&5
1

A2
~ u0&u0&u0&6u1&u1&u1&).

In reality, of course,all qubits undergo decoherence at the
same time. However, to first order in the interaction timet
the total time evolution operator acting on alln qubits can be
written as

Udec
total~ t !512 i ~Hdec

~1!1•••1Hdec
~n!!t1o~ t2!, ~3!

whereHdec
( i ) is the time invariant Hamiltonian describing the

interaction between thei th qubit and its environment. In
writing Eq. ~3! we have assumed that each qubit interacts
with independent environments. Up to first order int,
Udec
total(t) is a sum of operators that act only on a single qubit

and its environment. Thus, by the linearity of quantum me-
chanics, errors changing all qubits at the same time can be
corrected perfectly up to first order int. It can be shown
easily that ifN error corrections are performed within a time
interval @0,T) there is a remaining error probability of order
o„(T/N)2… after each error correction event. Thus the accu-
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mulated error at timeT is of ordero„N(T/N)2…. This error
can be made arbitrarily small by choosing a sufficiently large
N.

In most quantum-optical systems of practical interest,
however, the system gets entangled very rapidly with the
environment compared to typical experimental time scales.
The time evolution of the interaction of the quantum bits
with the environment is in an exponential regime. This is the
limit where a Markov or white noise approximation can be
made@11#. The resulting time evolution cannot be derived
from a coherent, Hamiltonian evolution. Spontaneous emis-
sion from an excited atom is a typical example for a system
where the Markov approximation is excellent. For a system
of n qubits, each coupled to an individual environment, the
unitary time evolution operator describing the interaction of
the qubits with the environment cannot be decomposed to
first order in the timet into a sum of operators, each acting
only on a single qubit and its corresponding environment as
in Eq. ~3!. Thus a frequent repetition of the error correction
procedure may not freeze the state of the system in the same
way as for errors deriving from a coherent, Hamiltonian evo-
lution. The purpose of this paper is to show that all quantum
error correction schemes, e.g., that presented in Refs.@5–7#,
remain valid for decoherence of this kind.

The paper is organized as follows. In Sec. II the master
equation and quantum trajectory techniques to deal with
quantum optical systems are briefly reviewed in order to es-
tablish the notation and methodology of the present paper.
Error correction in this decay model is discussed asymptoti-
cally in Sec. III. Section IV deals with the correction of
multiple errors.

II. DECAY AND DECOHERENCE ARE QUANTUM
OPTICAL SYSTEMS

A. Master equation

In quantum-optical systems decay and decoherence are
usually described within the theory of quantum Markov pro-
cesses@11#. The physical basis of this theory is the assump-
tion of a weak coupling of the system to an ‘‘environment’’
with a short correlation time. In the system dynamics this
coupling will introduce damping and fluctuations. Under
these assumptions the environment can be eliminated from
the problem and a master equation of Lindblad form for the
reduced density operatorr(t) can be derived (\51) @11#:

d

dt
r~ t !52 i @Heffr~ t !2r~ t !Heff

† #1(
j51

k

Jjr~ t !J j
† . ~4!

The reduced density operatorr(t) is obtained by tracing
over the degrees of freedom of the environment.Heff is a
non-Hermitian, effective Wigner-Weisskopf Hamiltonian de-
fined by

Heff5Hsys2
i

2(j51

k

J j
†Jj ,

whereHsys is the Hamiltonian of the system. In the following
we will omit Hsyssince we are interested only in the effect of
decoherence on static quantum states. In writing Eq.~4! we

have assumed that the system can decay ink channels, where
the operatorJj is the ‘‘jump operator’’ corresponding to the
j th decay channel. A jump operator can be any operator
acting on the system. In the following we will focus on spon-
taneous emission. We will assume that the jump operator of
a qubit undergoing spontaneous emission is}u0&^1u, where
u1& is an excited state decaying to the ground stateu0&. The
first term in Eq.~4! gives rise to a coherent, nonunitarian
evolution under which pure states remain pure. The second
term is a ‘‘recycling term,’’ which maps pure states into
statistical mixtures.

B. Quantum trajectories

The master equation~4! corresponds to a physical situa-
tion where no measurements are performed on the environ-
ment to gain additional information about the system dynam-
ics. However, in our context it is most useful to analyze the
solution of ~4! as an ensemble average over ‘‘quantum tra-
jectories’’ of pure states in the sense of a stochastic Schro¨-
dinger equation@12#. Single trajectories may be viewed~with
some caution! as the ‘‘real’’ quantum dynamics in a single
experiment conditional to a ‘‘measurement protocol’’ of
quantum jumps (t1 , j 1), (t2 , j 2), . . . , (tk , j k), where a quan-
tum jump of typej i takes place at timet i . The time evolu-
tion conditional to a given measurement protocol is calleda
posteriori dynamics@13#. Between quantum jumps the sys-
tem evolves according to the effective HamiltonianHeff :

Ueff~ t,t0!5e2 iHeff~ t2t0!. ~5!

A quantum jump of typej leads to a wave-function collapse
according to

uC~ t1dt!&5
Jj uC~ t !&

iJj uC~ t !&i .

Thus the~unnormalized! state of the system conditional to a
measurement protocol (t1 , j 1), (t2 , j 2), . . . , (tk , j k),
t i11.t i , is

uC~ t !&5Ueff~ t,tk!Jj kUeff~ tk ,tk21!Jj k21
•••

Jj 1Ueff~ t1 ,t0!uC~ t0!&. ~6!

The solution to the master equation~4! is obtained as an
ensemble average over projectors onto states conforming to
Eq. ~6!. The probability density for a certain sequence of
quantum jumps to be realized is given by the square of the
norm of the ~unnormalized! state uC(t)& according to Eq.
~6!. This is the basis of the quantum Monte Carlo wave func-
tion method@12#.

C. Effects of decay and decoherence

According to the quantum trajectory formalism the~un-
perturbed! dynamics of the system is modified in the pres-
ence of a coupling to the environment by two different ef-
fects:

~a! Quantum jumps. For a given ~normalized! state
uC(t)& a quantum jump of typeJj takes place in the time
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interval @ t,t1dt) with probability iJj uC(t)&i2dt.
~b! Effective time evolution. Even if no quantum jump

takes place, an~undesired! time evolution according to
Ueff(t,t0) distorts the state of the system: the effective time
evolution conditional to no quantum jump for an initial quan-
tum stateuC(t0)& is given by

uC~ t !&5
Ueff~ t,t0!uC~ t0!&

uuUeff~ t,t0!uC~ t0!&uu
. ~7!

As an example we consider the nine-qubit code given in Eq.
~2! and assume an initial stateuC(t0)&5au0&1bu1&. More-
over, we assume that thei th qubit decays according to the
jump operatorJi5Agu0i&^1i u, whereg is a decay rate. This
is the decay model conforming to spontaneous emission. The
non-Hermitian, effective Hamiltonian is thus given by

Heff52 i
g

2(j51

9

u1 j&^1 j u. ~8!

Thus the effective time evolution for timesgt@1 reads

uC~0!&5au0&1bu1&

gt→`
——→ u0&u0&u0&u0&u0&u0&u0&u0&u0&.

This example demonstrates that even if no quantum jump
takes place, the encoded quantum superposition is changed
in an undesired and unrecoverable way.

III. ERROR CORRECTION

Let H5 ^
nH2 be the Hilbert space of the system ofn

qubits andHcodePH be the subspace that can be stabilized
against decoherence. The total Hilbert spaceH is decom-
posed into subspacesH05Hcode and unitarian images
Hi5UiHcode such that the subspaces are mutually orthogo-
nal, i. e.,

H5H0%H1% . . . %Hn and Hi'Hj~ iÞ j !.

Error correction takes place in two steps. First we perform
a measurement that projects onto one of the subspacesHi .
Secondly, in case of an error an appropriate unitary transfor-
mation depending on the outcome of the first step is per-
formed to restore the initial state inHcode. Thus, the sub-
spacesHi have to be designed such that for any stateuC&
PHcodeand any matrixA acting only on a single qubit

Ui21PiAuC&}uC& or PiAuC&50, ~9!

wherePi denotes the projector ontoHi .
In the following we shall treat the two different sources of

errors due to the effective time evolution and due to quantum
jumps separately and show that both errors are corrected si-
multaneously. We shall assume in the following that we
want to stabilize a quantum stateuC&PHcode for a timeT
and that the error correction procedure is appliedN times.

A. Errors due to the effective time evolution

~a! Example. We first analyze the effect of error correc-
tion of a state that has evolved according to the effective
Hamiltonian within the encoding given in Eq.~2!. For the
same decay conditions as in the example of Sec. II.C. the
effective time evolution of the two encoded basis states is

Ueff~ t !F u0&

u1&G5a1
3 ~ t !F u0&

u1&G1a2
3 ~ t !F u1&

u0&G ,
1a1

2 ~ t !a2~ t !F u112&1u121&1u211&

u221&1u212&1u122&
G ,

1a1~ t !a2
2 ~ t !F u221&1u212&1u122&

u112&1u121&1u211&
G . ~10!

Here we have defineda6(t)5(16e23gt)/2 and we have
used the shortcut notationu111&[u1&u1&u1&, etc.

The error correction procedure applied to a quantum state
that has undergone effective time evolutionUeff(t) for some
time t according to Eq.~10! changes the quantum state as
follows: First the state is projected onto one of the following
four subspaces by an appropriate measurement:

Hcode5$u111&,u222&%5$u0&,u1&%,

H15$u211&,u122&%,

H25$u121&,u212&%,

H35$u112&,u221&%.

If the state is found inHcodeno error is detected and the basis
states after error correction read

PcodeUeff~ t !F u0&

u1&G5a1
3 ~ t !F u0&

u1&G1a2
3 ~ t !F u1&

u0&G . ~11!

By Pcode we denote the projector ontoHcode. On the other
hand, if the state is found in one of the Hilbert spacesHi an
appropriate unitary transformationUi is applied to recon-
struct the original state inHcode. In this example, the basis
states in the second~third! line of Eq. ~10! are transformed
into the correct~wrong! initial basis states (i51,2,3):

UiPiUeff~ t !F u0&

u1&G5a1
2 ~ t !a2~ t !F u0&

u1&G1a2
2 ~ t !a1~ t !F u1&

u0&G .
~12!

HerePi denotes the projector ontoHi . If the error correction
procedure is performed frequently on the time scale of decay,
i.e.,gT/N!1, we can expanda6(t) and write the time evo-
lution operator of the system in basis$u0&,u1&% after error
correction corresponding to the two cases in Eq.~11! and Eq.
~12! as follows:
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PcodeUeff~ t !5F129gt/2 0

0 129gt/2G1o~g2t2!,

UiPiUeff~ t !5F3gt/2 0

0 3gt/2G1o~g2t2!. ~13!

Note that in both cases the time evolution operator is to first
order in t proportional to the unit matrix. In the language of
quantum trajectories the time evolution operator describing
the state at timeT is a product of time evolution operators
PcodeUeff(T/N) and UiPiUeff(T/N) from Eq. ~13!. The op-
erators are chosen according to the probability for projection
ontoHcodeor Hi . It can be seen easily that the deviation of
the total time evolution operator from an operator propor-
tional to the identity is of ordero„N(T/N)2…. Thus the error
can be made arbitrarily small by choosing a sufficiently large
N.

~b! The general situation. Let us now justify that this
inhibition of the effective time evolution is in fact a generic
feature of error correction. The effective, non-Hermitian
Hamiltonian reads for the case of independent environments
for each qubit:

Heff5Heff
~1!1•••1Heff

~n! , ~14!

whereHeff
( i ) is an effective Hamiltonian acting only on the

i th qubit. Let us assume that in the time interval@0,T) no
quantum jump takes place. The conditional time evolution of
a quantum stateuC(0)&PHcode for the case of no error cor-
rection is given by Eq.~7!. The quantum state immediately
before each error correction event has evolved according to
the time evolution operator

Ueff~T/N!512 i ~T/N!~Heff
~1!1•••1Heff

~n!!1o„~T/N!2… .

Now we shall consider the case ofN error corrections within
the interval@0,T). Note that errors due toUeff , which are of
first order inT/N are single qubit errors@cf. Eq. ~3!# and can
thus be corrected perfectly@cf. Eq. ~9!#. The total time evo-
lution operator at timeT is given by a product ofN opera-
tors, which are proportional to the identity up to first order in
T/N. Thus the state of the system at timeT after N error
corrections is given by

uC~T!&}@11o„~T/N!2…#NuC~0!&.

Therefore the accumulated error at timeT is of order
o„N(T/N)2… and can be made negligible by choosing a suf-
ficiently largeN.

B. Errors due to quantum jumps

The assumption of independent environments for the
quantum bits implies that the jump operatorsJj in the master
equation~4! act only on single qubits. Thus single quantum
jumps can be corrected perfectly according to~9!. The prob-
ability P1 for a ~recoverable! single jump between two error
correction events is according to Sec. II B.

P15(
j51

k E
0

T/N

uuUeff~T/N,t !JjUeff~ t,0!uC~0!&uu2dt

5o„T/N…,

whereas the probabilityP.1 for a ~nonrecoverable! multiple
jump is of at least second order inT/N:

P.1512uuUeff~T/N,0!uF~0!&uu22P15o„~T/N!2….

Thus the probability for a nonrecoverable error in the inter-
val @0,T) is of ordero„N(T/N)2….

C. Combined correction of both kinds of errors

In practice both kinds of errors discussed in Secs. III A
and III B. take place at the same time and have thus to be
corrected simultaneously. However, the probability for an
unrecoverable error due to the combination of an~by itself
recoverable! error due the effective evolution and a~recov-
erable! error due to a single quantum jump is already of
second order inT/N. Therefore, this probability can be made
arbitrarily small by choosing an appropriateN too.

IV. HIGHER ORDERS

In practice,N cannot be made arbitrarily large since the
required measurements and unitary transformations will take
a finite time. Therefore, the order inT/N for both kinds of
errors should be as large as possible. Of course codes ca-
pable to correct multiple errors due to quantum jumps will
require more qubits and more complicated networks for error
detection and correction@6,8#. By using similar arguments as
in Sec. III A. it can be shown that the probability for an
unrecoverable error due to the effective time evolution is at
least of the same order as the error probability for an unre-
coverable error due to quantum jumps. However, the actual
order of the error probability for errors due toUeff may be
higher and depends on the design of the code as shown in the
following two examples.

~a! Constant weight code. All vectors in HcodePH are
superpositions of product states with factorsu0& andu1&. For
the decay conditions presented in the example of Sec. II C.,
the effective time evolution of any of the states in the super-
position depends only on the number of statesu1&. Thus, if
all vectors inHcodecan be written as a superposition of prod-
uct states with a fixed number ofu1& states, the effective time
evolution operator restricted to the subspaceHcode is propor-
tional to the identity. Therefore, projection ontoHcode re-
stores the original state without any error.

~b! Codes from ‘‘classical’’ codes. The construction of
quantum error correcting given in@8# is based on two ‘‘clas-
sical’’ codesC1 and C2 with $0%,C2,C1 @14#. It can be
shown that after a single error correction event and in the
absence of quantum jumps the error due toUeff is of the
ordero(td), whered is the minimum weight of the dual code
C2' of C2 @15#.
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V. CONCLUSIONS

In this paper we have shown that existing error correction
schemes can cope with quantum-optical systems with Mar-
kovian decay. This extends the scope of these schemes sig-
nificantly and is the basis of their applicability for quantum
computer models that seem realistic with present or planned
technology@16–18#.

Of course, the experimental realization of these schemes
remains a challenging task. However, if specific decay mod-

els are considered, experimentally feasible schemes can be
found @19#.
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