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Stabilization of quantum states in quantum-optical systems
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Recently it has been shown by several authors that quantum states can be stabilized against decoherence by
periodically performing measurements and unitary transformations. We extend their decay model to a more
realistic one in the framework of quantum optics conforming to the Markov approximation. It is shown that all
qguantum error correcting codes are able to cope with this decay mod¢Btbat0-294{©6)00410-9
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Much of the ongoing research is carried out to create and |1)leo)

manipulaten-particle entangled statd&S). ES have appli- Here|0) and|1) are the basis states of the qubit dag are

cations in a variety of contexts: They are fundamental forarbitrary states of the environment, as long as unitarity in Eq.

quantum computation and quantum communicafibh are (1) js fylfiled. The main idea of these error correction
the basis of fundamental tests of quantum mechanics verséghemes is to measure periodically if, and what kind of, an
local realists’ theorie$2], and promise novel atomic Spec- grror has taken place without gaining any information on the
trOSCOpy teChniqUeS W|th resolution better than the Standargtored quantum Superposition_ |f an error iS detected an ap_
quantum limit[3]. The main obstacle, however, is the fragil- propriate unitary transformation is performed to reconstruct
ity of macroscopic quantum states due to the coupling to afhe original state.

environment. Thus, it is of crucial importance to understand An example for such a code is that given by S8},

the effects of decoherence and to develop methods to stabithere a single qubit is encoded redundantly in nine qubits:
lize ES against decoherence in realistic systéfis

dec- -

- @

The generic device for creating and manipulating en- [0)=|+)|+)|+), (2)
tanglement is the quantum computer, which may be viewed -
as a quantum state synthesizer. It is thus natural to discuss |1)=|-)-)-),

the problem of stabilizing ES in the language of quantum
computing. The memory of a quantum comput&uantum  \ynere
register”) consists of a set of two-level systems usually re-

ferred to as “qubits.” In order to perform any desired com- 1
putation one should be able to perform arbitrary unitary | =)= —=(]0)|0)|0) =|1)|1)|1)).
transformations on the quantum register. These operations V2

can be decomposed into a sequence of steps involving only a ) )
few qubits at a timé“quantum gates’) [1]. Further require- In reality, of courseall qubits undergo decoherence at the

ments to realizing a quantum computer are a way to read of@me time. However, to first order in the interaction titme

the final result and a method to reset the quantum register [N€ total time evolution operator acting on aljubits can be

There are two kinds of errors that arise in the process of'/'iten as
creating and preserving E®) Static errors that take place
after the ES has been created successfifiguantum
memory errors’) and (i) dynamical errors in the process of .
creating an ES“quantum gate errors). Schemes to deal WhereHE,'gC is the time invariant Hamiltonian describing the
with errors of type(i) have been proposed by several authordnteraction between théth qubit and its environment. In
[5-9]. Very recently a scheme to correct dynamical errors ofvriting Eq. (3) we have assumed that each qubit interacts
type (i) has been proposed by Ciratal.[10]. with independent environments. Up to first order tin
The error correction schemes proposed in REfs-7] Uff;ﬁ'(t) is a sum of operators that act only on a single qubit
have the capability to correct single errors and require sysand its environment. Thus, by the linearity of quantum me-
tems ofn=9, 7, or 5 qubits to encode a single qubit. For chanics, errors changing all qubits at the same time can be
these schemes, it has been shown that errors can be correctarected perfectly up to first order in It can be shown
perfectly if asingle (but arbitrary qubit interacts with the easily that ifN error corrections are performed within a time
environment according to an arbitrary time evolution operadinterval[0,T) there is a remaining error probability of order
tor Ugec: o((T/N)?) after each error correction event. Thus the accu-

Utotal(t):l_i(Hgt)c+ et Hg;)c)t-l-o(tz), 3

dec
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mulated error at timd is of ordero(N(T/N)?). This error have assumed that the system can dec&ydnannels, where

can be made arbitrarily small by choosing a sufficiently largehe operatotJ; is the “jump operator” corresponding to the

N. jth decay channel. A jump operator can be any operator
In most quantum-optical systems of practical interest@cting on the system. In the following we will focus on spon-

however, the system gets entangled very rapidly with thd@neous emission. We will assume that the jump operator of

environment compared to typical experimental time scalesd qubit undergoing spontaneous emissior [8)(1|, where

The time evolution of the interaction of the quantum bits|1) is an excited state decaying to the ground sf@je The

with the environment is in an exponential regime. This is thefirst term in Eq.(4) gives rise to a coherent, nonunitarian

limit where a Markov or white noise approximation can be evolution under which pure states remain pure. The second

made[11]. The resulting time evolution cannot be derived term is a “recycling term,” which maps pure states into

from a coherent, Hamiltonian evolution. Spontaneous emisstatistical mixtures.

sion from an excited atom is a typical example for a system

where the Markov approximation is excellent. For a system B. Quantum trajectories

of n qubits, each coupled to an individual environment, the

unitary time evolution operator describing the interaction of

the qubits with the environment cannot be decomposed t

first order in the time into a sum of operators, each acting

only on a single qubit and its corresponding environment a

in Eg. (3). Thus a frequent repetition of the error correction

The master equatiof¥) corresponds to a physical situa-
tion where no measurements are performed on the environ-
ent to gain additional information about the system dynam-
ics. However, in our context it is most useful to analyze the
olution of (4) as an ensemble average over “quantum tra-

rocedure mav not freeze the state of the svstem in the sa jectories” of pure states in the sense of a stochastic Schro
P y S ystem in fnger equationl12]. Single trajectories may be viewédith
way as for errors deriving from a coherent, Hamiltonian evo-

some cautionas the “real” quantum dynamics in a single

lution. The purpose of this paper is to show tha_t all quamu"}experiment conditional to a “measurement protocol” of
error correction schemes, e.g., that presented in Refs/], qUANtUM JUMPStLi1), (t,]2)s - - ., (], Where a quan-

remain valid for decoherence of this kind. tum jump of typej; takes place at timg . The time evolu-

Th_e paper is organized as follows. In_Sec. Il the maSt.e{ion conditional to a given measurement protocol is catled
equation an(_j quantum trajectory tech_nlques_ to deal W'trf:)osteriori dynamicg13]. Between quantum jumps the sys-
quantum optical systems are briefly reviewed in order to €Stam evolves according to the effective Hamiltonidg:
tablish the notation and methodology of the present paper. '

Error correction in this decay model is discussed asymptoti- Ut to) =€ Hef(t=t0), (5)
cally in Sec. lll. Section IV deals with the correction of
multiple errors. A quantum jump of typg leads to a wave-function collapse

according to
Il. DECAY AND DECOHERENCE ARE QUANTUM

OPTICAL SYSTEMS TP (1))
W (t+dt))=r—h—7
A. Master equation 171 ()

In quantum-optical systems decay and decoherence arg, s the(unnormalizedi state of the system conditional to a
usually described within the theory of quantum Markov Pro- measurement protocol t(j1), (ta.iz) te.i )

cesseg1l]. The physical basis of this theory is the assump-, ~ _, g
tion of a weak coupling of the system to an “environment” A
with a short correlation time. In the system dynamics this W(t)) = t )T tot -
coupling will introduce damping and fluctuations. Under W (1) =Uerl(t,t) T Yer(tio ti-1) iy,
these assumptions the environment can be eliminated from
the problem and a master equation of Lindblad form for the Ji, Ueri(t1,t0) [ ¥ (to)). (6)
reduced density operatpi(t) can be derived/=1) [11]:
‘ The solution to the master equatigd) is obtained as an
d ensemble average over projectors onto states conforming to
— — - i . f - : X
arP (=~ ilHenp (D) p(t)Heﬁ]Jr;l Jip(Ty- 4 Eq (6). The probability density for a certain sequence of
quantum jumps to be realized is given by the square of the
The reduced density operatp(t) is obtained by tracing norm of the (unnormalized state| ¥ (t)) according to Eq.
over the degrees of freedom of the environmétyy is a  (6). This is the basis of the quantum Monte Carlo wave func-
non-Hermitian, effective Wigner-Weisskopf Hamiltonian de- tion method[12].
fined by
C. Effects of decay and decoherence

"
Hefr=H gy '_E TJt7 According to the quantum trajectory formalism tfun-
eSS vvly perturbed dynamics of the system is modified in the pres-
ence of a coupling to the environment by two different ef-
whereH,sis the Hamiltonian of the system. In the following fects:
we will omit Hg ssince we are interested only in the effectof (@) Quantum jumps For a given (normalized state
decoherence on static quantum states. In writing(Bgwe  |W(t)) a quantum jump of typeJ; takes place in the time
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interval [t,t+dt) with probability||jj|\I’(t)>||2dt. A. Errors due to the effective time evolution

(b) Effective time evolutianEven if no quantum jump (@) Example We first analyze the effect of error correc-
takes place, an(undesired time evolution according to tion of a state that has evolved according to the effective
Ue(t,to) distorts the state of the system: the effective timeHamiltonian within the encoding given in E). For the
evolution conditional to no quantum jump for an initial quan- same decay conditions as in the example of Sec. II.C. the

tum state|W (to)) is given by effective time evolution of the two encoded basis states is
Uert(t,t0) [P (to)) |0) 0 > 1)
P(t))= . 7 _
YO =0t P o) @ UV 39| =220 | #8210 g

As an example we consider the nine-qubit code given in Eq.
(2) and assume an initial staf® (ty))= «|0)+ B|1). More-
over, we assume that théh qubit decays according to the
jump operator7,= \/y|0;,)(1;|, wherey is a decay rate. This

[+4+ =)+ |+ —+)+|—++)

+a+(t)a (t) | +>+|_+_>+|+_—>

is the decay model conforming to spontaneous emission. The |—— )+ |+ =)+ |+ ——)
non-Hermitian, effective Hamiltonian is thus given by +a+(t)a2,(t) . (10
[+ 4+ =)+ |+—+)+|—++)
9
—|%E |1;)(1]. (8)  Here we have defined. (t)=(1+e 3")/2 and we have
=1 used the shortcut notatids- + +)=|+)|+)|+), etc.
o ) . The error correction procedure applied to a quantum state
Thus the effective time evolution for timeg>1 reads that has undergone effective time evolutidgg(t) for some
time t according to Eq(10) changes the quantum state as
|¥(0))=al0)+B|1) follows: First the state is projected onto one of the following

four subspaces by an appropriate measurement:

—[0)]0)|0)[0)[0)[0)|0)|0)[0). Heoae={|+++).[ == =)} ={10),| 1)},

This example demonstrates that even if no quantum jump
takes place, the encoded quantum superposition is changed Ha={l—++)|+——)},
in an undesired and unrecoverable way.
Ho={|+—+)[—+—)}
I1l. ERROR CORRECTION

={++-),|—-—+)L
Let H=®"H, be the Hilbert space of the system f Ha=| A 2

qubits andHyqec H be the subspace that can be stabilized
against decoherence. The total Hilbert sp&tds decom-
posed into subspace${y=TH. g4 and unitarian images
H; = U, Ho4e SUCh that the subspaces are mutually orthogo-
nal, i. e.,

If the state is found ift{ .4 N0 error is detected and the basis
states after error correction read

|0)
|1>

1)
|0>

|0)
|1>

codéJeff(t) a+(t) +a (t (11)

H=Ho®H1® ...&H, and H;LH;(i#]).

By P.oqe We denote the projector ont . On the other
and, if the state is found in one of the Hilbert spatgsan
appropriate unitary transformatiai; is applied to recon-
Struct the original state ift{;oqe- In this example, the basis
states in the secon(hird) line of Eq. (10) are transformed
into the correct{wrong) initial basis statesiE 1,2,3):

Error correction takes place in two steps. First we perfornr}1
a measurement that projects onto one of the subsgdces
Secondly, in case of an error an appropriate unitary transfor:
mation depending on the outcome of the first step is per:
formed to restore the initial state iH 4. Thus, the sub-
spacesH; have to be designed such that for any staite
€ Heoge @Nd any matrixA acting only on a single qubit |0>

|1>

|0)
|1>

1)

)]
- (12

UPiUer(t) =a%(t)a_(t) +a’ (t)a, (1)

U YPA|WY=| W) or PAW)=0, (9)

whereP; denotes the projector onf; .

In the following we shall treat the two different sources of HereP; denotes the projector ontd; . If the error correction
errors due to the effective time evolution and due to quantunprocedure is performed frequently on the time scale of decay,
jumps separately and show that both errors are corrected die., yT/N<1, we can expand..(t) and write the time evo-
multaneously. We shall assume in the following that welution operator of the system in basif),|1)} after error
want to stabilize a quantum stat¥) e H o4 for a time T correction corresponding to the two cases in @4) and Eq.
and that the error correction procedure is apphetimes. (12) as follows:
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1-99t2 0 - KN
7Dcodeueff(t): 0 1—9’)/t/2 +0(’)’t )r Plz_zl fo ||Ueff(T/Nrt)~7jUeﬁ(ta0)|q,(0)>||2dt
i=
=0(T/N),
UPUex(t) = 3z +0(y*t?) (13
i 7Y eff 0 3yt/2 VAR

whereas the probabiliti?-. ; for a (nonrecoverablemultiple

Note that in both cases the time evolution operator is to firsjump is of at least second order TN:
order int proportional to the unit matrix. In the language of
guantum trajectories the time evolution operator describing
the state at timd is a product of time evolution operators P>l:1—||Ueff(T/N,O)|<I>(0))||2—P1=o((T/N)2).
PeoddJeii( T/N) and U P,U(T/N) from Eq. (13). The op-
erators are chosen according to the probability for projection
onto Heoge OF H; - It can be seen easily that the deviation of Thys the probability for a nonrecoverable error in the inter-
the total time evolution operator from an operator propor-g [0.T) is of ordero(N(T/N)?).
tional to the identity is of ordeo(N(T/N)?). Thus the error
can be made arbitrarily small by choosing a sufficiently large
N. C. Combined correction of both kinds of errors

(b) The general situationLet us now justify that this ) ] ) .
inhibition of the effective time evolution is in fact a generic N practice both kinds of errors discussed in Secs. Ill A
feature of error correction. The effective, non-Hermitianand Ill B. take place at the same time and have thus to be

Hamiltonian reads for the case of independent environmentgorrected simultaneously. However, the probability for an
for each qubit: unrecoverable error due to the combination of(lap itself

recoverablg error due the effective evolution and(acov-
erablge error due to a single quantum jump is already of
second order if/N. Therefore, this probability can be made
_ arbitrarily small by choosing an appropridtetoo.

where H{}} is an effective Hamiltonian acting only on the

Heg=H®+ - +HY, (14)

ith qubit. Let us assume that in the time inter{/8IT) no IV. HIGHER ORDERS
quantum jump takes place. The conditional time evolution of _ o _
a quantum statf¥ (0)) e Hoqe for the case of no error cor- In practice,N cannot be made arbitrarily large since the

rection is given by Eq(7). The quantum state immediately required measurements and unitary transformations will take

before each error correction event has evolved according 8 finite time. Therefore, the order VN for both kinds of
the time evolution operator errors should be as large as possible. Of course codes ca-

pable to correct multiple errors due to quantum jumps will
require more qubits and more complicated networks for error
detection and correctidr6,8]. By using similar arguments as

_ ) ~in Sec. Il A. it can be shown that the probability for an
Now we shall consider the case Nferror corrections within - ynrecoverable error due to the effective time evolution is at
the interval[ 0,T). Note that errors due 0, which are of  |east of the same order as the error probability for an unre-
first order inT/N are single qubit erroref. Eq.(3)] and can  coverable error due to quantum jumps. However, the actual
thus be corrected perfeCtBZ:f. Eq (9)] The total time evo- Order Of the error probabmty for errors due U)eff may be

lution operator at timel is given by a product oN opera-  higher and depends on the design of the code as shown in the
tors, which are proportional to the identity up to first order infollowing two examples.

U TIN)=1—i(T/N)(HE + - - +HI) + 0((TIN)?).

T/N. Thus the state of the system at tifieafter N error (a) Constant weight codeAll vectors in Hegee H are
corrections is given by superpositions of product states with fact@s and|1). For
the decay conditions presented in the example of Sec. Il C.,
| (T))oc[1+0((T/N)2) N[ W (0)). the effective time evolution of any of the states in the super-

position depends only on the number of stdtes Thus, if

Therefore the accumulated error at tinfe is of order all vectors inHg,geCan be written as a superposition of prod-

ficiently largeN. evolution operator restricted to the subspét:g,.is propor-

tional to the identity. Therefore, projection onfdyqe re-
_ stores the original state without any error.
B. Errors due to quantum jumps (b) Codes from “classical” codesThe construction of

The assumption of independent environments for theéjuantum error correcting given [8] is based on two “clas-
quantum bits implies that the jump operatgfsin the master ~ sical” codesC; and C, with {0}CC,CC; [14]. It can be
equation(4) act only on single qubits. Thus single quantum shown that after a single error correction event and in the
jumps can be corrected perfectly according9p The prob- absence of quantum jumps the error duelg; is of the
ability P, for a (recoverablgsingle jump between two error ordero(t?), whered is the minimum weight of the dual code
correction events is according to Sec. Il B. C; of C, [15].
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V. CONCLUSIONS els are considered, experimentally feasible schemes can be

In this paper we have shown that existing error correctior}cound [19].
schemes can cope with quantum-optical systems with Mar-
kovian decay. This extends the scope of these schemes sig-
nificantly and is the basis of their applicability for quantum
computer models that seem realistic with present or planned The authors wish to acknowledge many fruitful discus-
technology[16-18. sions with Ignacio Cirac and Peter Zoller. T.P. was sup-
Of course, the experimental realization of these schemegorted by the Austrian Science Foundation under Grant No.
remains a challenging task. However, if specific decay modS06514-PHY.
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